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Abstract

Experimental protein function annotation does not scale with the fast-growing sequence databases. Only a tiny fraction (<0.1%) of
protein sequences has experimentally determined functional annotations. Computational methods may predict protein function
very quickly, but their accuracy is not very satisfactory. Based upon recent breakthroughs in protein structure prediction and protein
language models, we develop GAT-GO, a graph attention network (GAT) method that may substantially improve protein function
prediction by leveraging predicted structure information and protein sequence embedding. Our experimental results show that GAT-
GO greatly outperforms the latest sequence- and structure-based deep learning methods. On the PDB-mmseqs testset where the
train and test proteins share <15% sequence identity, our GAT-GO yields Fmax (maximum F-score) 0.508, 0.416, 0.501, and area under
the precision-recall curve (AUPRC) 0.427, 0.253, 0.411 for the MFO, BPO, CCO ontology domains, respectively, much better than the
homology-based method BLAST (Fmax 0.117, 0.121, 0.207 and AUPRC 0.120, 0.120, 0.163) that does not use any structure information.
On the PDB-cdhit testset where the training and test proteins are more similar, although using predicted structure information,
our GAT-GO obtains Fmax 0.637, 0.501, 0.542 for the MFO, BPO, CCO ontology domains, respectively, and AUPRC 0.662, 0.384, 0.481,
significantly exceeding the just-published method DeepFRI that uses experimental structures, which has Fmax 0.542, 0.425, 0.424 and

AUPRC only 0.313, 0.159, 0.193.
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Introduction

High throughput sequencing technology has yielded an
explosive number of sequences, but only a tiny fraction
of them have experimentally determined functional
annotations [1]. There is a dire need for fast and
accurate protein function annotation tools for the
community to study the growing sequence databases [2—
4]. Many computational methods have been developed to
annotate protein functions based on primary sequences
[5-9], protein family and domain annotations [10-12],
protein-protein interaction (PPI) networks [7, 9, 10], and
other hand-crafted features [8, 9, 13]. Critical Assessment
of Functional Annotation (CAFA), a community-driven
benchmark effort for automated protein function anno-
tation, has shown that integrative prediction methods
that combine multiple information sources usually
outperform sequence-based methods [2-4]. Sequence-
based methods use sequence similarity to transfer
functional information and thus, do not work well on
novel sequences that are not similar to any annotated
sequences [2, 4, 14]. Domain and family annotations
as well as PPI information are useful for function
prediction, but they are often missing or incomplete for
the vast majority of unannotated sequences [12, 15]. In
addition, structure-based methods such as local surface

match [16-19] have been successfully applied to protein
function and PPl inference with high-resolution structure
data based on binding site characterization.

Proteins acquire their function by folding into certain
3-dimensional structures in vivo [20, 21]. Two structurally
similar proteins may share similar functions even with
dissimilar sequences [22-25]. That is, purely sequence-
based approaches may not work well in transferring
functions between structural homologs. To bridge the
gap between sequence and function, it is crucial to
develop methods that can directly utilize structural infor-
mation for function prediction. Methods that leverage
protein structure databases such as Funfam and DeepFRI
[15, 26] have shown promising results in structure-based
protein function annotation. Although only a very small
percentage of proteins have experimental structures,
recent breakthroughs in protein contact and structure
prediction [27-29] allow us to generate accurate structure
information for a large portion of proteins, which can
be used for large-scale automated protein function
annotations.

Deep learning such as convolutional neural networks
(CNN) [30] and residual neural networks (ResNet) [31]
has been widely adopted by the computational biol-
ogy community and showed immense success in some
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Figure 1. Overall architecture of GAT-GO: Input sequences are first processed into 1-D features (SA/SS/PSSM) and fed into a 1-D CNN feature encoder to
produce node-level feature embeddings. GAT combines the inter-residue contact graphs with node-level feature embeddings to generate a protein-level
feature vector, which is then used by a dense classifier to predict GO term probability.

areas such as profiling epigenomic landscapes from DNA
sequences [32-35] and protein folding [27, 28, 36]. Graph
convolutional networks (GCNs) [37] are able to learn rep-
resentation from arbitrarily structured graph input [38,
39]. Graph attention network (GAT) [40] is a type of graph
neural network (GNN) that performs graph convolution
with self-attention [41]. GAT and GNN are used to model
gene expression and study protein structure refinement
[42, 43]. Unsupervised protein sequence models are used
to capture inter-residue relationships for protein contact
prediction and have become an integral part of many pro-
tein structure prediction methods [27, 28, 36]. Recently,
deep protein language models have been developed [44—
46] to encode context and global information of a protein
for downstream tasks such as stability prediction and
contact prediction.

To leverage predicted structure information and pro-
tein embeddings for function prediction, we have devel-
oped a GAT-based method called GAT-GO that uses Rap-
torX [47] to predict structure information of a protein
and Facebook’s ESM-1b [44] to generate its embedding.
GAT-GO outperforms traditional homology-based algo-
rithms such as BLAST [48] and previous deep learning
methods [6], even when test proteins have low sequence
identity with training proteins. Two recent studies [15, 49]
have explored GCN and protein embeddings for protein
function prediction, but they show limited improvement
over sequence-only methods. Our method differs from
the GCN method DeepFRI [15] as follows. We use GAT
[40] instead of conventional GCN. GAT enhances model
capacity by allowing flexible node feature aggregation
through self-attention. In addition, we use topological
pooling [50] to enable more efficient downsampling that

improves model generalizability. Moreover, GAT-GO uses
predicted inter-residue contacts for both training and
test, while DeepFRI uses some native contact graphs in
training.

Results
GAT-GO: predicting protein function via GATs

Asshownin Figure 1, GAT-GO integrates protein sequence
representations and predicted inter-residue contact
graphs using a CNN-based feature encoder and a GAT-
based graph encoder. GAT allows capturing interactions
among spatially close residues, which may be missed in
sequence-only methods. GAT-GO consists of three major
modules: (i) a CNN that takes sequential features and
residue-level sequence embedding as input to produce
per residue feature representation. (ii) A GAT that
takes a predicted contact graph and the CNN-generated
representation vector as input. Each GAT layer is followed
by an attention-based topological pooling layer [50] to
perform topology-aware downsampling. A global pooling
layer is used at the end of GAT to extract protein-level
representation. (ili) A dense classifier that predicts the
probability of functional annotations from the GAT-
generated representation and protein-level sequence
embedding.

We evaluate the performance across all three gene
ontology domains (MFO, BPO, CCO) using both protein-
centric metric Fpgx (Maximum F-score) and GO term-
centric metric area under precision-recall curve (AUPRC).
Fmax measures how well a method retrieves relevant
function annotations across all tested proteins and
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Table 1. F,,.x and AUPRC of the tested methods on the PDB-cdhit
dataset. DeepFRI(Native) indicates the native contact map of a
test protein is used

Fmax AUPRC
Model MFO BPO CCo MFO BPO [¢{e{0)
Naive 0.156  0.244 0.318 0.075 0.131 0.158
BLAST 0.498  0.400 0.398 0.120 0.120 0.163

1D CNN(DeepGO)  0.359  0.295 0420 0.368 0.210  0.302
DeepFRI(Native) 0.542 0425 0424 0313 0.159 0.193
GAT-GO(Ours) 0.633 0492 0547 0.660 0381 0479

AUPRC assesses the precision-recall tradeoff across all
GO terms predicted.

GAT-GO improves protein function prediction

We test GAT-GO on the PDB-cdhit dataset and com-
pare it to sequence-only methods including BLAST and
the standard Naive baseline used in the CAFA bench-
mark [2, 4] and a just-published structure-based GCN
method DeepFRI, which uses contact graphs extracted
from native structures. We have also implemented a 1D
CNN method to represent the state-of-the-art sequence-
only deep learning method DeepGO [6]. As shown in
Table 1, GAT-GO vastly outperforms BLAST, 1D CNN and
DeepFRI across all three gene ontology domains. GAT-
GO has Fpgx 0.637, 0.510, 0.542 on the MFO, BPO, CCO
ontology domains, respectively, whereas BLAST has Fygy
0.497, 0.399, 0.390. Despite using predicted contacts and
being trained on a much smaller dataset, GAT-GO has
AUPRC 0.662, 0.384, 0.481 on the MFO, BPO, CCO ontology
domains, respectively, substantially better than DeepFRI
that has AUPRC 0.313,0.159, 0.193. The higher the AUPRC
value, the more confidence we have in the predicted
protein-function pairs. GAT-GO has a much better AUPRC
than the competing methods, indicating the function
annotations predicted by GAT-GO are much more reliable
than the other methods across all predicted GO terms.

GAT-GO’s performance with respect to sequence
identity

Past studies often use time-gated temporal datasets to
evaluate model generalizability to previously unanno-
tated sequences [6-8]. However, this temporal evaluation
approach may have similar sequences in the training and
test data and thus, inflate the test result. Some recent
studies use sequence identity to split the training and
test data [15, 49] and thus, may provide a more accurate
view of model generalizability to novel sequences. This
evaluation practice is widely adopted by other fields
such as protein structure prediction [51]. We generate
training and test datasets (See Methods; Data split and
processing) using five different sequence identity thresh-
olds (15%, 25%, 35%, 45%, 55%) and compare GAT-GO
with BLAST and two sequence-based methods imple-
mented by ourselves: (i) a 1D CNN method that predicts
protein function from primary sequence only; (ii) a 1D

ResNet method that predicts protein function from both
sequential features and protein sequence embeddings.
Neither 1D CNN nor 1D ResNet uses predicted inter-
residue contact graphs. Here we cannot compare GAT-GO
with DeepFRI since the latter does not have pretrained
models for a specific sequence identity threshold. As
shown in Figure 2, the performance of almost all the test
methods increases with respect to sequence identity, but
BLAST performs badly at low sequence identity zones.
GAT-GO consistently outperforms the other methods on
all three ontology domains regardless of sequence iden-
tity. When the training and test sequences share <15%
sequence identity, GAT-GO has Fygx 0.501, 0.406, 0.508 for
the MFO, BPO, CCO ontology domains, respectively, and
AUPRC 0.427, 0.253, 0.411, much better than 1D ResNet
(Fmax 0.408, 0.331,0.450 and AUPRC 0.294, 0.184, 0.318)
and 1D CNN (Fmax 0.154, 0.161, 0.270 and AUPRC 0.048,
0.067, 0.112). The sequence-only methods 1D CNN and
BLAST do not fare well at low sequence identity due to
a lack of explicitly shared sequence patterns between
the training and test sequences. On the other hand,
structural features like predicted inter-residue contact
graphs and protein sequence embedding can drastically
improve protein function prediction for novel sequences.

Predicted contacts and sequence embedding
improve protein function prediction

To thoroughly investigate the contributions of individ-
ual factors, we evaluate the performance of four deep
models (1D ResNet, GCN and GAT) with different fea-
ture combinations on the PDB-cdhit testset. As shown in
Table 2, both 1D ResNet and GAT-GO can leverage protein
sequence embeddings to improve function prediction.
For example, compared to 1D ResNet using only primary
sequence, 1D ResNet using both primary sequence and
protein-level embeddings may improve Fpa by 0.204,
0.136, 0.109 for the MFO, BPO, CCO ontology domains,
respectively. This observation is consistent with [49] that
found protein sequence embeddings encode useful infor-
mation for protein function prediction and can signifi-
cantly enhance model performance.

To investigate the contribution of protein-level embed-
dings to the performance of GAT-GO, we compare two
GAT models. One uses sequential features and residue-
level embeddings as input and the other uses both
protein-level and residue-level embeddings on top of
sequential features. Using protein-level embeddings
improves Fmgx by 0.070, 0.020, 0.052, and AUPRC by
0.097, 0.083, 0.101 for the MFO, BPO, CCO ontology
domains, respectively. To demonstrate the improvement
of the GAT-based model architecture over the GCN-based
architecture developed by [15], we compare a GAT model
that uses one-hot encoded primary sequences, residue-
level embeddings, and predicted inter-residue contacts
with a GCN model that uses the same set of features. The
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Figure 2. (A) Fmax and (B) AUPRC performance comparison on the PDB-mmseq dataset across different sequence identity thresholds.

GAT model yields Fpax of 0.551, 0.472, 0.490, and AUPRC
of 0.558, 0.289, 0.364 whereas the GCN model yields Fax
of 0.459, 0.443, 0.461, and AUPRC of 0.408, 0.245, 0.315 for
the MFO, BPO, CCO ontology domains, respectively.

To study how much predicted inter-residue contacts
may help, we compare the ResNet model and the
GAT model, both of which use sequential features and
protein-level and residue-level embeddings. But the GAT
model uses predicted contact graphs whereas the ResNet
model does not. The GAT model has Fpgx 0.637, 0.501,
0.542, and AUPRC 0.662, 0.384, 0.481 for the MFO, BPO,
CCO ontology domains, respectively, whereas the ResNet
model has Fygx 0.548, 0.416, 0.500 and AUPRC 0.559,
0.293, 0.393. See Supplementary Tables S2 and S3 for
more detailed comparisons. This result suggests that
predicted structural information can improve protein
function prediction in addition to protein sequence
embeddings.

Explicit structural information amends function
interpretation in longer sequences and
high-specificity GO terms

To better understand how predicted inter-residue con-
tacts enhance protein function prediction, we compare
GAT-GO with ResNet, both using the same set of input
features except that ResNet does not use predicted
contact graphs. To measure how GAT-GO improves
function prediction accuracy, we calculate the precision
difference between GAT-GO and ResNet on each tested
sequence and study its relationship with sequence
length.

The precision improvement by GAT-GO is positively
correlated with sequence length. Their spearman’s
correlation coefficient is 0.312, 0.259, 0.221 for the MFO,
BPO, CCO ontology domains, respectively, as shown in
Figure 3. This result implies that the longer the sequence,
the greater impact predicted structural information
has on prediction accuracy. This is because GAT (with
predicted contacts) may capture interactions among
residues that are well separated along the primary
sequence. In contrast, sequence-based methods such
as 1D ResNet often focus on local sequence patterns and
are not good at capturing interactions of residues that are
far away from each other along the primary sequence.
Studies have shown that explicitly modeling long-range
residue interactions can greatly improve performance in
various tasks [42] in addition to functional prediction.

Using predicted structural information may also
improve the prediction accuracy of GO terms with high
specificity. We measure the specificity of one GO term
using information content (IC) (See Methods; Evaluation
metrics). A Go term with high IC is more specialized and
thus, rarer in occurrence. On the other hand, a GO term of
low IC represents a broad function that is more common
in annotations. As shown in Figure 4, GO terms with high
IC (IC > 12) can benefit from the inclusion of inter-residue
contact graphs.

Discussion

In this study, we have presented GAT-GO, a structure-
based deep learning method that integrates predicted
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Table 2. Fy.x and AUPRC of different methods with different feature combinations on the PDB-cdhit dataset

Frmax AUPRC
Model Input features MFO BPO CCO MFO BPO CCO
1D ResNet Primary sequence 0.337 0.284 0.369 0.334 0.188 0.267
Primary sequence and protein-level embeddings 0.541 0.416 0.478 0.541 0.289 0.386
Sequential features andpretrained embeddings® 0.548 0.416 0.500 0.559 0.293 0.393
GCN Predicted contact andPrimary sequence andresidue-level embeddings 0.459 0.443 0.461 0.408 0.245 0.315
GAT-GO Predicted contact andprimary sequence andresidue-level embeddings 0.551 0.472 0.490 0.558 0.289 0.364
Predicted contact and sequential features andresidue-level embeddings 0.567 0.481 0.495 0.565 0.301 0.380
Predicted contact and sequential features and pretrained embeddings 0.637 0.501 0.542 0.662 0.384 0.481

Pretrained embeddings refer to both residue-level and protein-level pretrained embeddings (See Methods; Input features).
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Figure 3. Performance improvement of GAT-GO over the ResNet-based sequence method versus sequence length. Sequences with increased average
precision (red) and decreased average precision (blue) are plotted against the length of the sequences. Spearman’s correlation coefficients for the
MFO, BPO, CCO ontology domains are 0.312, 0.259, 0.221 with P-value of 1.03e—40, 1.94e—50, 4.17e—68, respectively. Where the two-sided P-values are
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inter-residue contact graphs, protein embedding and  efficiently map protein sequences to function annotation
sequential features for protein function prediction. at a large scale, especially when the test sequences
By integrating predicted contacts and protein embed-  are not similar to the training sequences. By com-
ding through GATs, our method may accurately and  bining sequential features, protein embeddings and
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inter-residue contact graphs, GAT-GO may predict protein
function from both local and global information. In
contrast, sequence-based methods cannot make use of
predicted structure information and thus, are not good
at handling a test sequence that is not similar to any
training sequences.

In this study, we did not use the very large metage-
nomic databases in generating multiple sequence align-
ments for inter-residue contact prediction since it needs
much more computing power to search through these
databases. That is to say, our prediction accuracy may
further improve if we detect more sequence homologs
for our test proteins from the metagenomic databases.
Although GAT-GO can predict protein function from pre-
dicted structures, we benchmark our methods on the
proteins with experimental structures to fairly compare
with other structure-aware methods. To make full use of
protein structure prediction, we plan to train and test our
method using some larger protein function prediction
datasets such as the one used in CAFA [2].

GAT-GO outperforms existing function prediction
methods by utilizing high-resolution structure informa-
tion and high-capacity pretrained protein embeddings.
Our experiment shows that protein embeddings, pre-
dicted contact graphs, and the GAT network architecture
all are important for improving function prediction.
To further improve structure-based protein function
annotation, instead of using predicted contact graphs,
we may use predicted inter-residue distance graphs or
3D structure coordinates as the structure representation.
Other network-based protein features such as PPI
networks may also be used.

Methods
Data split and processing

We download the data used by DeepFRI [15] at https://
github.com/flatironinstitute/DeepFRI. We denote it as
PDB-cdhit since the train/test split is generated by cd-
hit [52] with 40% sequence identity. Each sequence
is annotated with memberships of 2752 GO terms
across three ontology domains. CD-hit [52] is often
used to remove redundancy between training and test
proteins, but its greedy clustering method and local-
alignment-based sequence similarity calculation can
still lead to redundancy between the training and test
set and thus, inflate the test results [52]. To fix this,
we employ another sequence clustering tool MMsegs
to generate a new dataset denoted as PDB-mmseqs.
MMSegs uses a nongreedy clustering scheme and profile-
based alignment method to ensure there is no higher
than desired sequence identity across clusters [53]. To
split data by sequence identity, we use MMseqs to cluster
all protein sequences with a given sequence identity
threshold, and then select a representative sequence
from each cluster to build a seed sequence pool. Then
we split the seed sequence pool uniformly at random
with an 8/2 ratio to form the train and test seed sets. The

final train/test sequences are determined by including
sequences from the respective clusters of the train/test
seeds. Validation sequences are generated by sampling
10% of the sequences from the training set uniformly
at random. We generate five different data splits with
five different sequence identity thresholds (15%, 25%,
35%, 45%, 55%). That is, in each dataset, no training and
testing protein share higher than the respective sequence
identity. See Supplementary Table S1 for details of the
datasets.

To measure the IC for an individual Go term, we com-
pute the Shannon Information from its frequency in
the training set. See Supplementary Section 5 for more
details.

Input features

Sequential features

One-hot encoding of the primary protein sequence is the
most commonly used input feature for sequence-based
methods. We encode a sequence with 25 different sym-
bols including the 20 common amino acid symbols and
five compound ambiguous symbols. We also use posi-
tion specific scoring matrix (PSSM) as sequence profiles
derived from the profile HMM generated by HHblits [54]
with E-value =0.001 and uniclust30 dated in August 2018.
We use secondary structure and solvent accessibility pre-
dicted by RaptorX-Property [55] from PSSM. In the article,
sequential features are referred to as the combination
of one-hot encoded primary sequence, sequence profile,
secondary structure annotations and solvent accessibil-
ity annotations.

Predicted protein structure information

To obtain inter-residue contact graphs, we predict pro-
tein Cb-Cb distance using RaptorX [27] and define inter-
residue contact probability as the probability of the Cb-
Cb distance <8 A. To build the contact graph, we add
an edge between two residues if and only if they have
>50% predicted contact probability. We have evaluated
performance with respect to different contact probability
cutoffs in Supplementary Table S4.

Protein embeddings

To obtain residue-level sequence embeddings, we use
ESM-1b [44], a deep protein language model trained
on over 250 million protein sequences with the UniRef
URS50/50 database [56]. ESM-1b embeddings have been
successfully applied in protein engineering tasks such
as guided directed evolution [57]. Since the number
of functionally annotated protein sequences is very
limited, we hope the ESM-1b embeddings can leverage
the huge protein sequence database by exposing the
functionally annotated proteins to a much larger protein
landscape. We generate the protein-level embedding
from the residue-level embedding by averaging across
all residue positions. The residue-level embeddings are
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incorporated in the sequential features and the protein-
level embeddings are integrated along with the learned
representation into the dense classifier.

Graph attention networks

GNN is a powerful tool for extracting information from
arbitrarily structured graph data [58]. GCN uses spectral
convolution on the graph Fourier domain to aggregate
neighboring representation for feature learning [37]. In
this study, we use the first-order approximation of the
spectral convolution: H*! = D-1/2AD-12H!@*1-Where D
is the degree matrix such that Dy = Zlezz\ﬂ, and A is
the adjacency matrix of the input contact graph with
self-loops, i.e. A =A+1 wherel;isanL x L identity
matrix. H! is the graph representation at layer I, and @
is the trainable weight of the neural network.

GAT aim to improve the flexibility and capacity of the
graph spectral convolution by employing a self-attention
mechanism to parameterize the feature aggregation
process [40]. Compared to GCN which aggregates
neighboring features with fixed weights determined by
the degrees of the respective nodes, GAT uses learnable
self-attention-based weights. First, GAT calculates the
pairwise importance scores for all node pairs as ¢; =
a(®h;, ©h;) where h is the hidden representation for
node i at layer | and @' is the trainable weight for layer
|. We use a single-layer feedforward neural network as
our attention function, i.e. a(z;, zj) = LeakyReLU(w?[z]|z])
where w is the trainable attention weight vector and ||
denotes concatenation. Graph structure information is
then injected by using the mask attention score «;Vj € N;
on top of the pairwise importance score with softmax

exp(a(ei}-))
EkeNieXP(a(eik” ’
node i. The hidden representation of each node is then
updated with h"*! = a(zjeNiaU@hﬂ)where o(-) = ReLU(-)
is the activation function.

as aj = where N; is the neighborhood of

GAT-GO network architecture

GAT-GO consists of three major components: (i) a CNN-
based sequence feature encoder. It takes three sequence
features as input and encodes them into residue-level
feature vectors. The three input features are the one-
hot encoding of primary sequences, sequence profile
and residue-level sequence embedding derived from the
protein language model. A 512-channel CNN is used to
encode each input feature and then summed to generate
the final encoding. The CNN-based encoder can capture
locally sensitive patterns from the sequential features.
Local patterns such as active sites and sequence motifs
are important in inferring protein functions. (i) A GAT-
based graph encoding module comprising four GAT lay-
ers with 512, 512, 1024, 1024 hidden channels and 12
attention heads with a 0.5 dropout rate. Following each
GAT layer, there is a topological pooling layer [50] that
computes node-level self-attention scores with graph
convolution and the top 50% of the nodes are retained as
input to the next GAT layer. A global mean pooling layer

is then used to pool residue-level feature encoding into
sequence-level feature encoding. This GAT-based graph
encoder helps our model to integrate long-range inter-
residue interactions and residue-level features to gener-
ate a more informative sequence-level representation for
function prediction. The number of layers and hidden
channels are decided by a hyperparameter sweep over
multiple combinations. (iii) A dense classifier that pre-
dicts protein function jointly from the learned sequence-
level feature by GAT-GO and the sequence-level protein
embeddings. By default, GAT-GO uses RaptorX-predicted
contact graphs and protein embeddings generated by
ESM-1b.

Evaluation metrics

We evaluate models by two main metrics, protein-centric
Fmax and GO-term-centric AUPRC. Fyux 1s the maximum Fq
score across all prediction thresholds in the range of [0,1]
with a step size of 0.01. The AUPRC is a summarization
of the precision-recall curve by calculating the weighted
mean of the precision achieved at each threshold. We use
AUPRC to measure the precision-recall tradeoff in a label
imbalanced environment. See Supplementary Section 2
for more details.

Competing methods

DeepFRI

It is a recently published GCN-based method that uses
autoregressive protein embeddings and contact graphs
derived from 3-D structures [15]. We obtain DeepFRI’s
predictions following the instruction at https://github.co
m/flatironinstitute/DeepFRI using experimentally solved
structures downloaded from https://www.rcsb.org/. In
contrast, our GAT-GO is a GAT-based method with mul-
tilevel topological pooling that uses transformer-based
residue- and protein-level embeddings. GAT-GO is trained
on inter-residue contact graphs predicted by RaptorX
[47] and thus, does not rely on experimentally solved
structures. For the purpose of comparing the DeepFRI
architecture with different feature combinations, we
also implemented a 3-layer GCN model as described in
[15] that we could train and test on our custom input
features.

Blast

Following the protocol used in the CAFA benchmark
[4], we obtain the BLAST score for each sequence by
first running blastp against the corresponding training
database. For each hit, we transfer the corresponding
GO terms with the sequence identity as the pre-
dicted probability. When multiple hits contain the
same GO term, the maximum sequence identity is
retained.

CNN and ResNet

We have implemented a 1D CNN model with 16 parallel
one-layer convolution operations where each convolu-
tion has kernel sizes of [8,16, ...,128] and 512 filters.
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This CNN is very similar to the state-of-the-art sequence-
only deep learning method DeepGOplus [6]. We have also
implemented a ResNet model with 21 convolution layers
that predict protein function from both primary amino
acid sequences and sequential features. See Supplemen-
tary for more details.

Model training

We train our models with binary cross-entropy as the loss
metric and the AdamW optimizer [59] with a learning
rate of 1le—4 for 30 epochs. We implemented all models
in the Pytorch and Pytorch geometric library [60, 61]. A
validation setis used to employ an early stopping scheme
with patience of 10 epochs. All models are trained with
an NVIDIA 2080Ti GPU on a Linux machine.

Key Points

e Our method GAT-GO outperformed state-of-the-
art structure-based and sequence-based meth-
ods in predicting protein functions by a large
margin even when test proteins are not similar
to the training proteins.

e GAT-GO leveraged both predicted protein struc-
ture information and protein language models
for function prediction.

e Graph Attention Networks is a powerful deep
model that may jointly encode protein structure
and sequence information.

Supplementary data

Supplementary data are available online at https://acade
mic.oup.com/bib.
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